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Perturbation theory of super-radiance 
I. Super-radiant emission 

R Saunders and R K Bullough 
Department of Mathematics, University of Manchester Institute of Science and Technology, 
Manchester M60 1QD. UK 

Received 22 November 1972, in final form 7 March 1973 

Abstract. Perturbation theory is used to show that super-radiance as envisaged by Dicke, 
in which the radiation rate goes as N2, the square of the number of atoms, can be interpreted 
in the same terms as  classical diffraction theory. The rate goes as N2 from samples small in 
three dimensions compared with a wavelength but goes essentially as N from larger samples. 
There is a natural distinction between coherent and incoherent contributions to the total 
radiation rate from larger samples. We contrast the two cases of large samples prepared 
in simple Dicke states and samples prepared (supposedly by an incident pulse) in Dicke 
states phased with a vector k .  The incoherent rates rins are essentially the same in the two 
cases: contributions to them are isotropic or almost isotropic. The coherent rates are 
different : the coherent rate for phased states simply exhibits features of propagating plane 
waves; the coherent rate from simple Dicke states describes directed spatially coherent 
emission controlled solely by the sample geometry. It does not follow in this case that 
FE,,,, necessarily dominates so that Ti,, can be neglected. The coherent radiation rate may 
be trapped whilst in large enough samples Tin, simply exceeds Tcoh. Dimensions for which 
Tin, U Tcah could define a maximum coherence length. However, contributions to  TCa 
are directed and there is no maximum coherence length for such directed emission. There 
is a limited amount of evidence in support of the view that a totally inverted dielectric 
evolves incoherently rather than coherently. 

1. Introduction 

The theory of the coherent spontaneous emission process now called super-radiance 
is due to Dicke (1954); for N two-level atoms on the same site the radiation rate is NT, if 
all atoms are excited but is iN2T, if as many atoms are excited as unexcited : To is the 
Einstein A coefficient. Comparable results are reported in a flood of recent papers 
(for example, Agarwal 1970, 1971a, b, 1973, Bonifacio and Preparata 1970, Bonifacio 
and Schwendimann 1970, Bonifacio et  a1 1971a, b, Bonifacio 1973, Bullough 1973). 
Despite this it is perhaps still not universally appreciated that the gross enhancement of 
the rate in the second case can be interpreted as the non-physical limit of an application 
of elementary diffraction theory ; that enhancement is a small sample result already 
contained-albeit in one rather particular sense-in classical theory ; and that it becomes 
substantially reduced in the case of macroscopic dielectrics. The time evolution of the 
emission process requires closed solutions to the full equation of motion ; some have 
been reported (Bullough 1973) and we shall report others elsewhere. There is also a 
number of comparable solutions in the literature cited above but almost all of these 
are overtly or covertly small sample results, or else the number of modes is so restricted 
that it becomes difficult to assess the conclusions. For extended samples nobody has 
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Super-radiant emission 1349 

extracted all the information implicit in Dicke’s original first-order perturbation theory. 
This paper reports the results of such a study. The argument is particularly simple and 
instructive and seems worth reporting if only for these reasons. 

Both in the equation of motion and transition rate theories it proves useful to 
exhibit the photon propagator explicitly. We work in the dipole approximation so 
that in the simplest form in which atoms interact only through their radiation fields 
this proves to be the transverse part of the tensor propagator 

(1) 

In this U is the unit tensor, R = Ix-x’I and the two-level atoms resonate at frequency 
a, = ck,. The atoms also interact through their Coulomb interactions VVR-’ and this 
is included by using the whole propagator (1). This longitudinal Coulomb interaction 
does not appear in the radiation rates, but it shifts the energy levels of small partially 
inverted samples and it shifts the energy levels of the macroscopic partially inverted 
isotropic dielectrics we also consider by, amongst other things, a Lorentz field term. 
It is unimportant to order e’ in the non-physical limit in which all atoms occupy the 
same site. This is because, as we shall show, in the following paper (part 11) the limit as 
R + 0 of such dipole-dipole interactions is not the self-interaction of point systems. 
The limits as R -, 0 of the small sample radiation rates are the rates obtained by Dicke, 
but the limits of the small sample level shifts are not the corresponding shifts for point 
systems. 

The interaction is a sum of terms -p(”. e(xi)  where p(’) is the dipole operator of the 
ith atom and e(xi)  is the transverse field operator evaluated at that particular atomic site. 
The corresponding operator density -p(x) . e(x) is more convenient since these sites 
do not appear in the field operator e($. This operator is the linear combination of 
annihilation and creation operators 

F(x, x’; a,) = (VV+ kf U) exp(ik,R)R-’. 

in which d (= 1 or 2) is a polarization index, is a unit polarization vector and Vq 
is the volume for quantization. We find e(x) actually becomes eliminated from the theory 
by concealment in the propagator F which is a c number. The operator density 

Pb) = ex,#o;(x) ( 3 4  

where xos = (Ojxls) = xs0 is the dipole x matrix element, il is a unit vector along x 
and r~ , (x )  is the total x component of spin density : 

N 

o,(x) = C 0lf’S(X--Xi). ( 3 4  
i =  1 

For completeness we quote the complete hamiltonian for N two-level atoms coupled 
by both the radiation field and the dipole-dipole Coulomb interaction, although we 
shall make little explicit reference to this hamiltonian later. This hamiltonian is 

H = C h c k ( a : , # k , ,  + 4) ++ha, 1 a,(x) - 3 C C p(x)p(x’) : VVlx - x‘l - ’ - p(x) . e(x). (4) 

The ‘summations’ over x and x’ are to be interpreted as integrations ; self-interactions 
are to be ignored in the dipole-dipole term. 

k,i. X x x)  X 
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The operator r~,(x) is the z component of spin density : 
N 

rJz(x) = 1 ayd(x-xi). 
i =  1 

A spin density oY(x) similarly defined completes the spin algebra. The commutation 
relations are then 

a(x) x a@') = 2ia(x)d(x - x') (6a) 

in general ; but if (and only if) all atoms occupy the same site xo (say) a number density 
6(x-x,) factors from each component of spin density and only the commutation 
relations for total spin 

(6b) 
are relevant. 

I t  is convenient in the first instance to take as basis states the Dicke states Ir, m ) .  
The two-level atom is a pseudospin system and r (Dicke's cooperation number) is 
total pseudospin ; m = $ ( N +  - N - )  where N * are the numbers of atoms excited (+) or 
unexcited (-). Plainly 0 < r < $ N ;  Jml < r .  The 2N states Ir, m) form a complete basis. 

There is an outgoing condition on F ; therefore only the emission of photons is 
acceptable and to  order e2 the selection rules for m are Am = - 1 .  For all atoms on the 
same site, r is a good quantum number: thus Ar = 0 and Am = - 1 only, in this case. 
For spatially separated atoms r is not good. A simple application of the Wigner-Eckart 
theorem shows that the selection rules are now Ar = 0, f 1 ; Am = - 1. 

In order to describe an extended system Dicke also introduced states I r , m ; k )  
labelled by a wavevector k .  For fixed k the set Ir, m ;  k) with 0 < r < $ N ;  (ml < r 
forms a complete basis. Transitions between states of the same k have the same selection 
rules Ar = 0, f 1 ; Am = - 1. We need to distinguish between the states Ir, m )  and the 
states Ir. m ;  k )  and we call the former 'simple' Dicke states, the latter 'phased' Dicke 
states: Ir, m ;  0 )  = Ir, m ) .  It is usually supposed the Ir, m ;  k )  can be excited by a pulse 
with wavevector k.  

We first consider radiating transitions between simple Dicke states in a spatially 
extended system : we consider the case Ar = 0 first. 

a x G = 2ia 

2. Perturbation theory of super-radiance : Ar = 0 transitions 

From the dipole interaction - C, p(x) . e(x) of§ 1 we find by a straightforward application 
of transition rate theory that for separated atoms, and up to order e', the radiation rate 
r for the transitions r = $ N ,  Ar = 0, Am = - 1 is the following: 

where I/ = I/' bounds the region occupied by the atomic sites xi, xj; To 
is again the Einstein A coefficient. 

transform of the time-ordered propagator 

$e2x&h-'k: 

The propagator F appears in a natural way in the perturbation theory as the Fourier 

i h - '(1 Te(x, t)e(x', t')l) 
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in which e(x, t )  is a Heisenberg operator for the free field and I ) is the initial photon 
state. We plan to discuss the way in which this propagator F emerges in the theory in 
greater detail in another paper. 

The propagator F has imaginary part 

Im F = ~ k ~ { U j 0 ( k , R ) + + ( 3 M - -  U)j2(ksR)}; (8) 

R is a unit vector along R = XI-x and j, and j, are spherical Bessel functions. Since 
j,(O) = 1 and j,(O) = 0, we find the result of Dicke 

r = ro(+N + m)($N - m + 1)  (9) 

when all atoms occupy the same site. When they do  not the system develops spatial 
coherence if the atoms occupy a periodic lattice: otherwise there is coherence to the 
extent that the atomic sites are completely uncertain and uncorrelated inside V.  For 
the sake of example we consider a macroscopic homogeneous isotropic sample of 
volume V which exhibits the local order which can be described by an atomic pair 
correlation function g(R). If the order is merely local g(R) -, 1 as R = Ix‘-xl -, cc. 
This feature will survive even though in principle g ( R )  depends on the state Ir, m), 

We take an appropriate ensemble average of (4) and define? 

6(x-xi)6(x‘-xj) ( j,, a(X-xi)) ave n, ( i t j  

For simplicity we identify n with NV- although this is not true for the grand ensemble, 
for example. There is now a natural way to separate the radiation rate r into two parts: 
an ‘incoherent’ part rinc and a ‘coherent’ part rcoh. These (again r = +N) are 

e2X’sj(g(R)-1)Im F(x,x’;w,):BBdR (I la)  N T ,  + 2Nn- 1 h 
(3N + m)($N -m+ 1) 

N 2  r i n c  = 

n2 (F jv Jv, Im F(x, x‘ ; U,) :ai dx dx’ 
(+N+m)(iN-m+l) 

N2 l-coh = 

We look at rinc first. 
The pair correlation length g ( R )  is sensibly 1 for all R > 1, a ‘correlation length’. 

This is why for macroscopic samples (but only for these) the integral in (l la) can be 
taken over all space and does not depend on the shape of V. But this means that rinc 
does not depend on the shape of V. Providing 1 << k,-’, (8) means moreover that 

( + N + m ) ( i N - m +  1)  r. = 
N inc 

In the grand ensemble, for.example, the Ornstein-Zernike relation 

applies. Here K is the isothermal compressibility at temperature T; k ,  is Boltzmann’s 
constant. For a dense fluid Kk,T- for an ideal gas nKk,T= 1 .  
Thus for m N 0, rinc N * A T o ,  not *N2ro and may be as small as 10-3Nr0. The 
incoherent rate controlled by rinc is thus drastically reduced by ‘coherence narrowing’ 

t We do not consider the case in which the two-level atoms adopt different orientations so that the vectors 1 
must do so and we do not average over these directions. 

and n - 
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for the total radiation rate is now controlled by the coherent part r c o h  if this is large 
enough. 

With n N N V - ' ,  rcoh  depends on 

To evaluate this we use the identity 

Im F(x, x' ; 0,) :Bri = T(k)  exp{ - ik . (x -x')} dk f 2e2x& 
h 

where 
e2x&k 
- (U -44) : ririd(k - o , c -  ') 27th r (k)  

(and 4 is a unit vector along k).  For V we shall take the right-sided box defined by 

The integrals on x and x' if done first reduce 9 to 
-?a 1 < x < *a, -4b < y < jb ,  -$c < z < 3c (here c is not the velocity of light!). 

23 T(k)L(k)dk s 
where L(k) is the Fraunhofer diffraction function 

sin$k,a sin$k,b sinfk,c L(k) ~ ~ ~ ( $k,a ) 2 (  ik ,b  ) 2 (  4k,c ) 
The following cases exemplify the consequences of this elementary piece of diffraction 
theory in super-radiance theory. 
Case I :  the point system; a, b, c all tend to zero (with N fixed). We find 9 = To and 
r c o h  is given by the Dicke result (9): rinc formally vanishes for point systems. Obviously 
as a, b, c + 0 with n fixed the rate vanishes. The point however is the old point that if 
k,a ( ( 1 ,  k,b << 1 ,  k,c << 1 and N = n x ( a b c ) ,  then the result (9) holds to neglect of 
O(k:a2) ,  etc. 
Case 2 :  the slab of width c ;  a, b + CO, c = finite. We use 

as a + CO to find 

8 n e Z x i ,  1 (sin $k,c)' 
h V 3k,c 

g=-- 

and r c o h  goes as N when m N 0 

( I N  + m ) ( i N  - m  + 1) (sin $k,c)2 
6nTonk; 

N $k,c ' 
l-coh = 

For small k,c the effective rate constant replacing N T ,  is 

37tr,nk;3x(k,c) = 4nne2x~,h- 'k ,c .  

For thick slabs however (sin ik,c)'/ik,c N (k,c)- ' which is substantially smaller than 
k,c. Thus for k,c - 100 and n - for example, To is replaced by a number also of 
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order To. Further the slab has the Fabry-Perot character of totally trapping coherent 
radiation when k,c = 2vx.  
Case 3 : for the long thin rod we find in any case the following : a = b = 0 and c + x 
means 

L(k) - 2 ~ ~ - ' 6 ( k , )  (18a) 
and 

3xr0  rcoh = (+N + m ) ( f ~  - m + I)-. 
4k,c 

This is super-radiant when m N 0 because V = 0, but the super-radiance is reduced 
when k,c is very large. For a narrow rod of cross section A and volume V, 

It is also evident from (15) that the radiation has the usual dipole radiation envelope- 
that is a doughnut with axis along ri (or x). In case 2 radiation only occurs in the two 
directions normal to the slab (k  only lies along 2).  Notice further that (again for m N 0) 
r c o h  cc n2Vc-' = n2A where A is the area of the slab which is supposed large. The 
intensity emitted normal to the slab is therefore proportional to n2 and does not depend 
otherwise on N or V. In case 3, wavevectors k are normal to z and the usual factor 
{ 1 -(d.  k) ' )  appears. Thus radiation is normal to the rod and the intensity does not 
depend on N and I/ simply through n2. 

Notice that the spatial coherence and directed emission occur because the system 
is supposed prepared in a simple Dicke state IiN, m) .  It is controlled by the surface 
geometry of I/ and is symmetrically directed for symmetric I! This kind of coherent 
emission was not discussed by Dicke (1954) (or in Dicke 1964). Unfortunately it is still 
an open question whether states with r = 3 N  and m N 0 can ever be reached with 
sufficient occupation in an extended system : we show in the next section that starting 
from total inversion in the state IiN, $ N ) ,  for example, the system tends to change r : 
it thus tends to evolve incoherently rather than coherently. 

3. Transitions when Ar # 0 

We use an additional quantum number a to distinguish the N - 1 different but degenerate 
unperturbed states with fixed m and definite total spin r = i N  - 1 .  The rate r from the 
state [$N,  m )  to any one of the N - 1 states l$N- 1 ,  m -  1, a )  is (to the approximation 
using (1  3)) 

( $ N + m ) ( i N + m - l )  r ( l$N,  m )  + ($N - 1 ,  m - 1 ,  a ) )  = (NTO-TonKkBT- N 9 ) .  ( 1 9 ~ )  
N ( N  - 1)2 

Note that the incoherent part in TonKk,T is 0(1) compared with the part NI-, and 
that the coherent part is 0(1) compared with this also. 

Next one has the general result for rates changing rand  m that 

T(lr,m,a)+ Ir+l ,m- l ,P) )  = r( lr+l ,  - m + l , b )  + Ir, -m ,a ) ) .  
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and 

Equations (19) together demonstrate that when m 0, all rates to and from r = i N  
involving change of r are incoherent to relative order 0(1/N). 

We can now consider transitions from the totally inverted state where m = r = i N .  
I t  follows from (1 1) that the rate to Ir, m - 1) is 0(1)  x To; however, the extended system 
will prefer to make transitions Ar = - 1 simply because there are N - 1 ways of doing 
this. The rate to each of these is To and the total rate ( N  - l)r,. The total rate should 
therefore be approximately NI-, and should be incoherent since the coherent part is 
O(1). In fact since the Dicke state I i N , i N )  is a product of single particle states it is 
easily proved outside perturbation theory that the total rate is precisely NT, and is 
totally incoherent. The same result emerges in perturbation theory to order e' : (19a) 
shows that the coherent part is identically eliminated. 

In the m - 0 region the total rate for Ar = + 1  transitions is still of order N T ,  
and adds to rinc which by (12) is already of order NT,. There is no contribution to 
rcoh which alone depends on surface geometry and is still given by ( l lb ) .  

This result means that the m - 0 region is coherent if and only if r c o h  actually 
dominates there : in contrast them - $N region is strictly quantal and always incoherent. 
A number of authors, notably Bonifacio, Schwendimann and Haake for example have 
noticed classical features in the m - 0 region : in particular these authors note small 
quantal fluctuations near m N 0:  they are concerned with the long rod prepared by 
an incident pulse in phased states with m N 0. Our conclusions for systems prepared 
in simple Dicke states are that relative fluctuations in the spatial coherence are smallest 
in the m - 0 region and there are two points here : first, it can never be correct to isolate 
the coherent part rcoh of the radiation rate and reject rinc in the region m N i N  since 
r c o h  actually vanishes there; second, even when m N 0 in a large macroscopic system 
it may not be correct to ignore rinc since r c o h  may still not dominate. If n 2 
k;' N cm and k,c N 1, r c o h  - 5 x lo3 TON for the slab when m N 0;  but if the 
slab is 100 reciprocal wavenumbers thick, 0 < r c o h  < 5 x 10-'T,N and the slab is 
scarcely coherent or classical. 

This feature allows us to define a maximum 'coherence length' for states IfN, m) 
which is in some ways analogous to the 'maximum cooperation' length for phased 
Dicke states introduced by Arecchi and Courtens (1970). This coherence length depends 
on the geometry of the sample, however. For the slab, in particular, rinc - N T ,  and 
rinc < r c o h  for widths less than about 100 reciprocal wavenumbers thick. This length 
is rather less than the number for the rod quoted by Arecchi and Courtens (0.1 cm for 
2nk;' = 7 x cm and ruby with 0.05 % Cr3' concentration). Moreover this line 
of analysis shows no evidence for the spiking of pulses postulated by Arecchi and 
Courtens (although within low order perturbation theory this might be expected) : 
rcoh remains coherent however large the system is, and is merely dominated by rinc 
as increasing size reduces its magnitude. 

There is however a crucial difference between r c o h  and rinc : rcoh summarizes all 
that radiation emitted in directions determined solely by the macroscopic geometry of 
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the sample ; Tint on the other hand is independent of that geometry and the contributions 
to it are essentially isotropic showing angular dependence only insofar as the radiation 
is dipole radiation from vector dipole matrix elements in the chosen direction d. 

To see this observe that (15a) means that 

2ne2x&h-'s (n-'d(R)+g(R)- 1) Im F(x,x'; o,):riridR 

= n 1 T(k) dk 1 (n-'6(R)+g(R)- 1) exp(ik. R) dR 

sin kR 
kR 

= n 1 T(k)  dk s (n- '6(R) + g(R) - 1)- dR. 

This quantity appears in the large bracket in rinc in (1 la) : the single particle contribu- 
tions there are now shown to be due to a self-interaction described by self-correlation 
functions 6(R). The radiation rate into solid angle do#)  for the transitions Ar = 0, 
Am = - 1 is therefore proportional to 

dR. 
sin k,R 

(n-  '6(R) + g(R) - 1)- s k,R 

2 2  

ne 'OS k:(U -I%) : i d  do$) 
27th 

The integral of this over all solid angles Q(k) reduces again to (20). 
The result (21) means that the radiation is dipole radiation identical with point 

source radiation as far as the envelope goes : the integral in (21) does not depend on k. 
When k,l << 1 since (sin k,R)/k,R E j,(k,R) = 1 for all R c I ,  the integral reduces to 
Kk,T within the terms leading to (12) with (13), for example; but even when k,I 2- 1 
the envelope is unchanged except for scale. Thus the envelope is indeed essentially 
isotropic and rcoh can be isolated from it by selecting directions in which this spatially 
coherent part of the radiation is dominant. There will be such directions for the slab, 
for example, if the area of the slab is big enough. In these directions there is no maximum 
coherence length. 

4. Transitions between phased Dicke states 

We have so far considered transitions between 'simple' Dicke states Ir, m).  The signifi- 
cance of the results depends on a capacity to put the system in one of these states. It 
may be easier to put the extended system into a phased Dicke state by exciting it with 
an optical pulse which has a carrier wave with wavevector k. In this form however the 
problem becomes a problem in optical pulse propagation : it is not possible to describe 
the optical excitation of an extended system and the subsequent decay of that excitation : 
the processes of excitation and decay are inextricably linked in the propagation process. 
A pulse has a unique wavevector k if it behaves like a plane wave with this wavevector. 
Outside the linear region k is in general only locally constant. Nevertheless for small 
enough dielectrics there may be pulses which vary in time but which behave like 
exp( +ik.  x) at all points in space inside the dielectric. This type of pulse underlies the 
work of Bonifacio et a1 (1971a, b) for example. 

For this type of pulse the phased Dicke states Ir, m ;  k )  form a basis in which since 
k is fixed r is a constant of the motion. However even in the evolution of such a pulse 
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it is very doubtful whether total occupation of a single Dicke state Ir, m ;  k )  occurs. 
The only exception is the weak field case where the state I)N, - i N +  1 ; k )  can be 
excited. This is discussed in detail in 9 3 of the paper 11. 

We believe the significance of phased Dicke states has been misunderstood. Never- 
theless the states were studied by Dicke (1954) and most subsequent authors and we 
look at them here. Following Dicke we introduce states 1 1 ,  m ;  k , )  labelled by an 
‘incident’ wavevector k , .  These states are created by the action of the creation operator 

N 

a+(k,) 1 U‘$ exp( - ik, . xi) 
i =  1 

acting on, for example, the ground state (which is a simple Dicke state) l+N, - 3 N ) .  
We find that for transitions involving fixed k ,  the sole effect is to replace k by k ,  in the 
exponent in the integrand of (15a)t. Equivalently the propagator F(x, x’ ; w,) is replaced 
by the phased propagator F(x, x’ ; w,) exp{ -ik, . (x’-x)}. In consequence the coherent 
transition rate IiN, m;kAo) + IiN, m-  I ; k , )  in which a photon of frequency w, is 
emitted in the direction k into dk is ri dk where 

rr; = ( 3 ~  + m)(+N - m + i)r(k)L(k-k,). (23) 

We therefore find the following : the 6 function in T(k)  requires k = k , ;  if the pulse 
is nonresonant, so that k # k , ,  L(k - k o )  has a nonvanishing argument and the previous 
geometrically dependent results are regained with appropriate changes in the effective 
wavevector. These results are now controlled by the geometry of Vand by k ,  however : 
they are no longer symmetrical if Vis and are directed by k , .  

In contrast, if the pulse is resonant so that the incident wavenumber is k,  and k ,  
and k have the same direction, L(k -/io) is unity for all a, b, c and we regain the result of 
Dicke (1 954) : 

(24) rr; = (+N + m)(+N - m + i)r(k). 
This applies to arbitrary extended systems and appears to mean that, when m N 0, 
Tr; ‘Y $ N 2 r ( k )  for any geometry. 

However, experience with linear dielectric theory shows that travelling plane wave 
pulses with wavevectors k ,  satisfying the free field dispersion relation w = c k ,  are 
possible at best only on resonance (as here) and further that perturbation theory yields 
erroneous results of the same qualitative character as is exhibited by (24). We can 
already see that (24) requires some delicacy of interpretation by adopting a different 
point of view. We first let a, b -, cc to  construct the infinite slab : we find that when 
k ,  is normal to the slab, so that the pulse is both normally incident and resonant, only 
a factor {(sin~k,-k,)c)/~(k,-k,)c}2 is unity for all c, all photons are emitted in the 
direction of k , ,  and the total rate is 

This result has reduced the N 2  dependence near m = 0 to N dependence even though 
it changes the small sample form of (17b) to one applicable for all slab widths c. The 

t More precisely this is the sole effect in a prescription rejecting reflected waves. The situation is analysed 
in the appendix to the following paper (part 11). 
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effective rate constant replacing NT, is now 47cne2xi,h- lksc in exact agreement with 
the constant used by Bonifacio et a1 (1971a, b) for long rods bounded only by their 
‘maximum cooperation length’. 

It might still appear from (25) that the emitted intensity Tco,A-‘(ccnZc2) can be 
made as large as one wishes simply by increasing the width c and that this intensity 
diverges with c. However, a comparable difficulty appears in linear dielectric theory 
and is there resolved by recognition that the excitation mechanism is significant as is 
also the spatial dispersion. The second point requires solution of the problem outside 
perturbation theory. At this stage, therefore, rather than invoke the ideas of maximum 
cooperation number and maximum cooperation length as they were first introduced 
by Arecchi and Courtens (1970), we shall cautiously take the view that the results (24) 
and (25) merely indicate that perturbation theory and the restriction to a single fixed 
k cannot adequately describe plane wave pulse propagation. Equation of motion 
methods support this view but contain difficulties still not elucidated. 

Taking (25) on its merits we see that it relies on the following result for L ( k - k , ) :  

Since k = k , ,  k ,  = k,,-because of the two 6 functions-whenever k ,  = k , t .  Thus if 
the pulse is resonant the term in c vanishes from (26) and the radiation is in the direction 
of the incident pulse. When the pulse is not resonant the large bracket does not vanish 
and there is evidently actual refraction, obeying Snell’s law, at the boundary of the slab. 
These are typical features of resonant and nonresonant plane wave pulse propagation. 
An explicit connection with linear dielectric theory is established in part I1 for Iml N 4N. 
The situation in the interesting m 21 0 region is of course more complicated and difficult 
and is not yet wholly understood. 

With k, fixed there is still an incoherent contribution to the radiation rate. This is 
almost identical with the incoherent contribution to transitions between simple Dicke 
states with Ar = 0. To calculate it it is sufficient to replace the integral in (21) by 

in which k, = 2k, sin 3k,8 and 8 is the angle between the directions ofk, and the outgoing 
photon direction R .  Providing k, 2 1, the envelope of outgoing radiation shows a 
small dissymmetry identical with the dissymmetry associated with a large correlation 
distance I in linear optical scattering theory. It applies whether ko is resonant or not 
since k ,  in (27) simply changes slightly (cf, eg, Rosenfeld 1951). 

5. Summary of results and conclusions 

The ‘super-radiant’ radiation rate from point systems can be as large as $N2T, where 
N is the number of atoms. We have shown in contrast that from extended systems in 
simple Dicke states )r, m )  the rates never exceed NT,. These rates have natural coherent 
and incoherent parts : the coherent rate consists of directed emission controlled by the 
sample geometry; the incoherent rate is isotropic. In the case of a dielectric slab the 
coherent emission is symmetric and normal to each surface. If the slab is wide enough 

t Providing the reflected wave is ignored: see the analysis in the appendix to paper 11 
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the total incoherent rate exceeds the total coherent rate. There is therefore ‘a maximum 
coherence length’ for the width of the slab: beyond this the radiation is dominantly 
incoherent, but since coherent emission is directed it can be distinguished in the total 
emission however wide the slab. We have also examined comparable emission from the 
narrow rod. 

Such coherent emission occurs predominantly in Ar = 0 transitions between simple 
Dicke states / $ N ,  m) : it requires placing the system in such a state initially. A totally 
inverted system prefers to make transitions with Ar = -1 and to emit incoherently. 
This appears also to be a general feature of simple Dicke states : thus we can expect an 
inverted system to tend to evolve incoherently with some admixture of coherent emission 
controlled only by the geometry. 

Systems in phased Dicke states Ir, m ; k) emit coherently but unsymmetrically in 
directions controlled by the wavevector k. They also emit incoherently : the incoherent 
emission is almost isotropic but is partly controlled by k. If the wavevector is resonant 
k = w,c- where os is the atomic resonance. In this case the geometry does not control 
the direction of the coherent emission. If k # w S c - l ,  however, there are refraction 
effects at the surface of the system. 

In the case of the slab super-radiance going as $NZT, does not occur in the m 3: 0 
region. The rate goes as N T , .  However if k = w,c-l it appears that by making the 
slab width large enough the coherent rate can be increased without limit. Apparently 
the coherent rate will always dominate over the incoherent rate if the slab is wide enough. 

However, this result depends on placing the system in a Dicke state phased with a 
definite resonant wavevector k = k, initially. It is doubtful whether perturbation 
theory is applicable on resonance. Further it is doubtful whether such phased Dicke 
states can be reached by exciting the system with a resonant pulse with wavevector 
k, as is usually assumed. Nevertheless the results for phased Dicke states show some 
features of resonant pulse propagation, although we conclude that they form in them- 
selves an inadequate description of pulse propagation. For this last reason there is no 
need at this stage to postulate a maximum ‘cooperation length’ to bound the coherent 
rate from very thick slabs. 

The distinction between super-radiance from large and small systems relies on 
interference-diffraction effects controlled by the propagator F. These effects will be 
the same in character (but not in magnitude) whether Iml 1: tlv or Iml N 0. 

A distinction is usually made between the coherent and incoherent excitation of a 
dielectric. In the former the off-diagonal elements of the reduced one-atom density 
matrix are nonzero in general and the atoms exhibit a nonvanishing expectation value 
of their dipole moments. This feature is also characteristic of both semiclassical radiation 
theory and the neoclassical theory of Jaynes (eg Jaynes and Cummings 1963). It is 
possible to show to a good approximation from our hamiltonian (the hamiltonian (4)) 
that if a dielectric is placed in a Dicke state, simple or phased, the expectation value of 
the total dipole moment vanishes throughout the motion. The radiation is therefore 
incoherent in this sense. 

Since F is a Green function of Maxwell’s equations, whether these are read as 
c number or operator equations, the diffraction-interference features of the theory will 
be the same whether the expectation values of the dipole moments vanish or not. An 
important conclusion seems to be that the enhanced radiation rates going as N z  from 
small samples occur whether the sample is ‘coherently’ excited, has a dipole moment, 
and hence is (almost) classical or whether it radiates quantally and incoherently from 
a definite Dicke state (simple or phased). Furthermore for extended samples like the 
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slab of case 2, for example, in a simple Dicke state or the slab in a phased Dicke state 
interpreted as in (25) the emitted intensity is proportional to n2 = (NV- ’ ) ’  and this 
again seems to be a result independent of the presence of an atomic phase, a dipole 
moment,oroff-diagonalelementsofthedensitymatrix. Thusobservationofn’behaviour 
as recently reported by Brewer and Shoemaker (1971) in the photon echoes from l3CH3F 
would not seem to distinguish between these two situations. 

Some of the qualitative content of the significance of diffraction-interference in 
modifying small sample super-radiance going as N 2  is already implicit in the work of 
Rehler and Eberly (1971). Their theory is an equation of motion theory using coherent 
Bloch states phased by an incident pulse: the propagation problem is ignored. The 
theory is decorrelated in all except self-correlations : this makes individual atoms 
emit quantally and incoherently but coherence effects between atoms are decorrelated 
and the system has a dipole. This illustrates the point that F has the same significance 
both in the correlated quantal theory developed in this paper and in a decorrelated 
neoclassical theory. 

In the following paper (part 11) we extend the perturbation theory to include level 
shifts and the effect of free photons on both these and the radiation rates. We also 
compare the results for Iml = 4N - 1 with the results of equation of motion methods 
for linear dielectrics. This is the one case where a phased Dicke state can be excited 
by an external field : agreement is essentially complete. 
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